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The stability of journal bearings is found to be increased by the use of multilobes. Studies have shown 
that performance is further increased by the use of pressure dams. This paper analyses the  
performance of an inverted three-lobe pressure dam bearing, which is produced by incorporating a 
pressure dam  in the upper lobe and two relief tracks in the lower two lobes of an ordinary inverted 
three-lobe bearing. A generalized Reynolds equation has been derived for carrying out the stability 
analysis of an inverted three-lobe pressure dam bearing that has been solved using the finite element 
method. The results indicate that the performance of an inverted three-lobe pressure dam bearing is 
better than an ordinary three lobe pressure dam bearing. 
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The enormous progress of modern engines and 
machinery has required the development of bearings 
operating under higher speed and pressures. It has 
been observed that the performance of ordinary 
circular bearings is not satisfactory at high speeds 
[1]. Several papers are available which deal with 
performance enhancement from manipulating 
geometrical changes of the journal bearing system 
and the lubricating fluid [2,3 ]. However, to increase 
the stability of ordinary journal bearings the use of 
multi-lobes and the incorporation of pressure dams 
is preferred [5]. Dynamic analysis has shown 
cylindrical pressure dam bearings are very stable [6-
9]. There are also non–cylindrical pressure dam such 
as finite– elliptical, half-elliptical, offset-halves, 
three–lobe and four-lobe [10-14]. According to Malik 
et al. [15]the performance of an inverted three-lobe 
bearing is better than that of a three-lobe bearing. As 

incorporation of pressure dams has proved to be 
useful in improving the stability of multilobe 
bearings, an inverted three lobe pressure dam 
bearing is expected to be more stable than an 
ordinary inverted three lobe bearing . Therefore the 
present study is undertaken to investigate the 
performance of an inverted three-lobe pressure 
dam bearing. 
  
Bearing Geometry 
 
Figure 1 shows the geometry of an inverted three-
lobe pressure dam bearing. A rectangular dam or 
step of depth Sd and width Ld is cut 
circumferentially in lobe 1 of the bearing. 
Circumferential relief tracks or grooves of certain 
depth and width Lt are also cut centrally in lobes 2 
and 3 of the bearing. Lobe 1 with pressure dam and 
lobes 2 and 3 with relief tracks are shown in figure 
2. Figure 3 shows Lobe 1 with pressure dam and 
lobes 2 and 3 with relief tracks. The relief tracks are 
assumed to be so deep that their hydrodynamic 
effects can be neglected. For a concentric position of 
the rotor, there are two reference clearances of the 
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zx,    : coordinates for bearing surface (x-   
peripheral, z-along shaft axis) 

φ      : Attitude angle 
.
α     : Whirl rate ratio, ωφα /

..
=  

.
β     : Squeeze rate ratio,  ωεβ /

..
=  

ε     : Eccentricity ratio, ce /  
δ       : Ellipticity ratio, )/1( ccm−  

θ  : Angle measured from the line of 
centers in the direction of rotation                                                              

gθ    : Oil-groove angle 
ρ    : Fluid density 
μ    : Average fluid viscosity 
ω    : Rotational speed 
v   : Dimensionless threshold speed,              

2/1)/( gcω  
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