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The stability of journal bearings is found to be increased by the use of multilobes. Studies have shown
that performance is further increased by the use of pressure dams. This paper analyses the
performance of an inverted three-lobe pressure dam bearing, which is produced by incorporating a
pressure dam in the upper lobe and two relief tracks in the lower two lobes of an ordinary inverted
three-lobe bearing. A generalized Reynolds equation has been derived for carrying out the stability
analysis of an inverted three-lobe pressure dam bearing that has been solved using the finite element
method. The results indicate that the performance of an inverted three-lobe pressure dam bearing is
better than an ordinary three lobe pressure dam bearing.
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The enormous progress of modern engines and

machinery has required the development of bearings
operating under higher speed and pressures. It has
been observed that the performance of ordinary
circular bearings is not satisfactory at high speeds
[1]. Several papers are available which deal with
performance enhancement from manipulating
geometrical changes of the journal bearing system
and the lubricating fluid [2,5 ]. However, to increase
the stability of ordinary journal bearings the use of
multi-lobes and the incorporation of pressure dams
is preferred [5]. Dynamic analysis has shown
cylindrical pressure dam bearings are very stable [6-
9]. There are also non-cylindrical pressure dam such
as finite- elliptical, half-elliptical, offset-halves,
three-lobe and four-lobe [10-14]. According to Malik
et al. [15]the performance of an inverted three-lobe
bearing is better than that of a three-lobe bearing. As
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incorporation of pressure dams has proved to be
useful in improving the stability of multilobe
bearings, an inverted three lobe pressure dam
bearing is expected to be more stable than an
ordinary inverted three lobe bearing . Therefore the
present study is undertaken to investigate the
performance of an inverted three-lobe pressure
dam bearing.

Bearing Geometry

Figure 1 shows the geometry of an inverted three-
lobe pressure dam bearing. A rectangular dam or
step of depth Sq and width L4 is cut
circumferentially in lobe 1 of the Dbearing.
Circumferential relief tracks or grooves of certain
depth and width L; are also cut centrally in lobes 2
and 3 of the bearing. Lobe 1 with pressure dam and
lobes 2 and 3 with relief tracks are shown in figure
2. Figure 3 shows Lobe 1 with pressure dam and
lobes 2 and 3 with relief tracks. The relief tracks are
assumed to be so deep that their hydrodynamic
effects can be neglected. For a concentric position of
the rotor, there are two reference clearances of the



bearing: a major clearance c given by a circle
circumscribed by the lobe radius and a minor
clearance c, given by an inscribed circle. Thus, the
centre of each lobe is shifted by a distance ep=c-cm,
known as the ellipticity of the bearing. The various
eccentricities and ellipticities are non-
dimensionalized by dividing by the major clearance
c.

| | TRACK
Figure 1. An inverted three-lobe pressure dam
bearing

Ellipticity ratio is defined as:
(6)=(c-c,)/c=1-c,/c

Eccentricity ratio is defined as:

(g):e/c
& =06 /Cey=€,/Ce3=63/C

If 7, and /, are circumferential lengths of the bearing
before and after the dam, then:

I, = 2RO /180
I, = R(120- 6, —20, )/180

The various eccentricity ratios and attitude angles of
the lobes of an inverted three-lobe pressure dam
bearing are given by:

g =& +6%-265 cos¢
g, =*+6% —2e5cos(2m/3— @)
g =& +6% =285 cos(27 /3 + B)
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¢ =7 —sin"(esin @)/ &)
¢y =57 /3+sin (e(sin 27 /3 - @)/ £5)
¢y = /3 —sin " (e(sin 27 /3 + ¢)/ £3)

Analysis

The Reynolds Equation for the laminar flow is:

3 3
oo, ofhp =6Rwa—h++125¢sin9+12écos6’
ox\ uox) oz\ u oz Ox
(1)

This equation is non-dimensionalized by making
the following substitutions:

Figure 2. Diagram showing various attitude
angles and eccentricity ratio

The non- dimensionalized equation thus obtained
is:

o[ a), (DY o[ ap)_zoh,
ox| 12 &x L) oz| 1206z ) 2 ox

Zedsin 2X + 1 cos 2X
P @)

The various assumptions made in deriving the
Reynolds Equation are that the fluid is Newtonian,
no slip occurs at the bearing surface, inertia terms
are neglected, oil viscosity is constant, and
curvature is negligible. The Reynolds equation is
analyzed for a pressure profile using the finite



element method. The solution of this equation is
obtained by minimizing the following variation
integral [18] over the individual elements:

—_ \2 2/~ \2
— lh 0Pe D OPe
Je“’e)*,ﬂ 2 12{[ ax] +(L] (azJ }

”h%—ESaCOSZX pe+ ﬂs in2x pe}dﬁe
20X oX OX
(3)
where P, = dimensionless film pressure in the el

element.

The Reynolds equation is an elliptical partial
differential equation and hence must be solved as a
boundary-value problem. According to McCallion et
al. [1g] for a bearing having oil supplied at zero
pressure, the largest possible extent of positive
pressure region is given by the boundary conditions
that both pressure and pressure gradient are zero at
the breakdown and build up boundaries of the oil
film. However, it has been shown [20] that even by
setting the negative hydrodynamic pressure to zero
as they occur in any iteration step, the results tends
to satisfy the above mentioned boundary conditions
in the limit. The latter approach has been followed in
the present analysis. Stiffness and damping
coefficients are determined separately for each lobe
and then added. The values of these stiffness and

damping coefficients, shaft flexibility, and
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Figure 3. Lobes of an inverted three-lobe

pressure dam bearing
dimensionless speed are then used to evaluate the
coefficients of the characteristic equation [21],which
is a polynomial of the 6" order for flexible rotors as
given below (for a rigid rotor, F-0). This
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characteristic equation is given by:

SFVG, +ssv4(F2Q +FQ)+S4V2(V2F2Q +2FG+V +v2FQ)+
S\A(2FG+C))+5%2FVC, +V'C, +G, J+5G+C, =0

where
c,=C,.C,-C,C,
c1=K,C, +K,C, -K,C,—K,C,
C,=C, +6W
C, =K,K, -K /K,
C,=K,+K,

For a rigid rotor, the value of F (dimensionless
flexibility) is taken as zero. The system is
considered as stable if the real part of all roots is
negative. For a particular bearing geometry and
eccentricity ratio, the values of dimensionless speed
are increased until the system becomes unstable.

Peak pressure = 19.1 at 246.5°
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Figure 4. Maximum pressure variation over each
lobe of the inverted three-lobe pressure dam
bearing (6=0.4)

The maximum value of speed for which the bearing
is stable is then adopted as the dimensionless
threshold speed. The stability threshold curves
divide any figure into two major zones. The zone
above this curve is unstable, whereas the zone
below is stable. The minimum value of this curve is
termed as the minimum threshold speed. Mostly,
the curve has a vertical line, towards the left side of
which the bearing is stable at all speed. This portion
is called the zone of infinite stability.



The present analysis has been done for the
bearing with the following parameters:

L/D=1.0, S;=1.5, L, =0.8,

L, -025 6,-85, 4,10

Three values of ellipticity ratio () = 0.4, 0.5, and 0.6,
were selected for present study.

Results and Discussion

Figures 4 to 6 shows the circumferential variation of
fluid film pressure at the centered line of an inverted
three lobe pressure dam bearing for the values of
ellipticity ratios (8) 0.4, 0.5 and 0.6 respectively. The

Peak pressure = 21.99 at 246.8°
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Figure 5. Maximum pressure variation over each
lobe of the inverted three-lobe pressure dam
bearing (§=0.5)

circumferential angle in these figures is taken from

the load line in the direction of rotation. The oil

supply grooves are marked in each figure. In

general, two extreme eccentricity ratios from the

investigated range are taken for which centre- line

pressures are plotted. Thus these plots show the

limits of fluid film pressure in each lobe for a given
set of design parameters in the investigation stage.

It is observed from these three plots (for 6 = 0.4, 0.5,
and o0.6) that the upper lobe (lobe1) is saturated with
moderate to heavy pressures. Figure 7 depicts the
pressure in the three lobes of an ordinary inverted
three lobe bearing at 6=0.5. The value of 6=0.5 is
selected for comparison purpose as most of the
researchers have taken this value. The figure shows
that the lobe 1 is cavitated over most of the surface or
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Peal pressure = 25.02 at 248.3
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Figure 6. Maximum pressure variation over each
lobe of the inverted three-lobe pressure dam
bearing (6=0.6)

has very low pressure. In the second and third lobes
heavy pressure are usually developed on larger
surfaces in all the cases. Thus, a comparison shows
that an inverted three lobe pressure dam bearing
would be very stiff as compared to an ordinary
inverted three lobe bearing, indicating more stable

operation.
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Figure 7. Maximum pressure variation over each
lobe of an inverted three-lobe bearing (6=0.5)

Figure 8 shows the variation of minimum film
thickness with Sommerfeld number for an inverted
three-lobe pressure dam bearing (for &= 0.4, 0.5,
and o0.6) and an ordinary three lobe pressure dam
bearing (for 6= o0.5). Minimum film thickness is

calculated from the expression:



hmin = c(1- larger value of the lobe eccentricity
ratios €1, €2, ¢35 and &4)

hmin is non-dimensionalized as:

Nmin =hmin/c

0.5« ordinary inverted three-lobe bearing

0.4 4
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Figure 8. Sommerfield number versus minimum
film thickness

This figure depicts that for a particular value of S,
minimum film thickness decreases as the value of
increases. It is also observed from the comparison of
the curves for an ordinary inverted three lobe
pressure dam bearing and inverted three-lobe
pressure dam bearing that by incorporation of
pressure dam, the minimum film thickness of the
inverted three-lobe pressure dam decreases. Figure
9 shows curves of friction -coefficients versus
Sommerfeld numbers for 6= 0.4, 0.5, and 0.6. There
is no significant variation in friction with change in
the value of ellipticity ratio. In general friction is
observed to increase with an increase in sommerfeld
number for all the values of 5.

The variation of dimensionless oil-flow coefficient
with Sommerfeld number is shown in figure 10. This
coefficient is calculated from the following
expression [15]:

2
~ 1(D -3dp ,-
h™ == AX
= 37[{'.] Z dz
Where dp
dz

is the slope of pressure curves at the sides of bearing.
From the figure it is observed that oil flow coefficient
decreases with an increase in the value of & for a
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Figure 9. Sommerfield number versus
friction coefficient

particular value of S.
A dimensionless friction coefficient (R/c) f, of a
journal bearing is given by:

( )f {”h (Tpdxdz+“. dxdz+”dxdz}s

062
Where he is the film thickness corresponding to 6.
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Figure 10. Sommerfield number versus

flow coefficient
Figure 11 shows a comparison of dimensionless
threshold speed with the variation of sommerfeld
number for a ordinary three lobe bearing, inverted
three lobe bearing and inverted three lobe bearing
with pressure dam. All the curves are drawn for o
=0.5 and F=o0. The curves show that in comparison
with an ordinary inverted three-lobe bearing, the
zone of infinite stability for the inverted three-lobe
pressure dam bearing increases from S-=o0.09 to
S=0.69. The minimum threshold speed is also found
to increase from 6.05 to 16.5. The curve also
indicates that there is a marginal decrease in the
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Figure 11. Comparison of stability characteristics
of a three-lobe and inverted three-lobe bearing
with and without a pressure dam

stability of inverted three-lobe pressure dam bearing
for sommerfeld number more than 2.54. Thus, in
general, the stability of an inverted three-lobe
pressure dam bearing is better than an ordinary
inverted three-lobe bearing.

Conclusion

1. The generation of pressure and their
circumferential variation in the upper half of the
bearing primarily affects the stability of a rotor
bearing system. The proportion of the hydrodynamic
load generated in the upper half of the bearing with
respect to load generated in the lower half is one of
the deciding factors of the bearing’s stability. Thus
higher pressure prevailing in a wider portion of the
upper half of the bearing would have a positive effect
on the stability of the bearing. In comparison with
ordinary three lobes bearing the pressure in lobe1 of
an inverted three lobe pressure dam bearing
increases from 3.78 to 4.6, whereas, the pressure in
the relief track decreases from 52.5 to 21.99, predicts
the increase in the stability of the bearing.

As pressure generated in lobe 1 of an inverted
three lobe pressure dam bearing is high as compared
to lobe 1 of an ordinary inverted three lobe bearing,
makes the inverted three lobe pressure dam bearing
stiffer than an ordinary three lobe bearing. Therefore
more stable operation is expected from an inverted
three lobe pressure dam bearing as compared to an
ordinary inverted three lobe bearing.

2. The values of o0il minimum film thickness
coefficients decreases where as the value of friction
coefficient increases with increase in & for a
particular value of Sommerfeld number.

3. As the Sommerfeld number increases from o.09 to
0.69, the curve shift towards the right side and thus
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the zone of stability increases. Even the minimum
threshold speed increased from 6.05 to 16.5, making
operation more stable.

Notation
c : Radial clearance
Co : Minimum film thickness for a
centered shaft
Cyxx>Cyy>Cyx,C N . .
XX EYe YW 0il - film damping coefficients

Cxx, Cxy,Cyx;Cyy : Dimensionless oil-film

coefficients Cx = Cyy (wc/W)

C0,C1,C2,C3,C4 : Coefficients of the characteristic

equation

D : Diameter

e : Eccentricity

F : Dimensionless shaft flexibility,w /ck

h : Oil-film thickness, (1 + ¢ cos0)

h : Dimensionless oil-film thickness,
h/2c

|: : Non-dimensionalized relief track
width Lg/L

E : Non-dimensionalized relief track
width Ly/L

57(1 : Non-dimensionalized relief track
width Sy/c

q : Dimensionless oil flow coefficient.

2k : Shaft stiffness
K,,K. ,K Kyy: Oil-film stiffness coefficients

xx 2 TN xy o TN yxo

Kaxx, Ky, Kyx, Kyy Dimensionless oil- film stiffness

coefficients, K xx = K,y (c/W)

L : bearing length
N : Journal rotational Speed
O : Lobe center of lobe i (i -1, 2, 3, 4)
P : Oil-film pressure
R : Journal radius

2
S : Sommerfeld no. w[ﬂj

w (¢

v : Peripheral speed of journal
W

: bearing external load



X, Z

T O N ™

)

«

<& %'

: coordinates for bearing surface (x-
peripheral, z-along shaft axis)

: Attitude angle
: Whirl rate ratio, a=dlo

: Squeeze rate ratio, g=¢/o
: Eccentricity ratio, e/c

: Ellipticity ratio, (I1-cy,/c)

: Angle measured from the line of
centers in the direction of rotation

: Oil-groove angle
: Fluid density

: Average fluid viscosity
: Rotational speed
Dimensionless threshold speed,

w(c/ g)”2
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