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The following study concentrates on nonlinear stiffness of milling machine tool spindle angle 
contact ball bearings in static mode. As a primarily theoretical study, it allowed us to build an 
analytical model to define nonlinear stiffness of angle contact ball bearings based on geometrical 
and physical parameters. Ball bearing deformation is also considered. Modifications were made to 
literature models resulting in better conformity of models to experimental results. An FEM model 
using ANSYS was constructed to analyze the different parameters’ effects on nonlinear stiffness of 
ball bearings. Among those parameters are physical ones, including the geometry, friction 
coefficient and boundary conditions, and numerical parameters such as mesh density and 
penetration. Experimental tests were done on the spindle ball bearing 7014 to measure the rigidity. 
A universal tensile testing machine was used to achieve the load-displacement curve. 
Experimental results were compared to the theoretical model. The developed theoretical model, 
constructed finite-element model, and experimental results showed good conformity.  
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The behavior of ball bearings is based on the 
stiffness calculation from local Hertz deformation [1]. 
Early research by Palmgren [2], Harris [3] and 
Eschmann et al. [4] focused on structural 
nonlinearities associated with the ball bearings 
because of mechanical gaps, Hertzian local contacts 
between balls and races and lubrication, among 
other topics. Palmgren established an analytical 
model of ball bearings from a “force-displacement” 
viewpoint. Recently, other models have been 
developed based on FEM methods. Lim [5] proposed 
a matrix model and validated the results by 
experiments on other literature models. De Mul et al. 
[6] used the same model of Lim but analysis was 

based on vectorial description. Fukata et al. [7] 
proposed a model which considers the ball’s inertia.   
Our contribution to this research is to suggest a 
different approach from existing works to obtain a 
ball bearing static stiffness model. The majority of 
preceding works ([2]-[9], [15]-[17]) are based on the 
Hertz theory but in the current study, we introduce 
a different approach by calculating deformations 
analytically. This study is also different in that the 
dynamic stiffness calculation is usually obtained by 
analytical calculation without experimental check 
[10]. However, Bogard et al. [11] and Marsh [14] 
have shown that the analytical model presents 
difficulties and gives bad answers to the dynamic 
calculation requirements. Therefore experimental 
methods to measure dynamic stiffness are necessary 
to support theoretical findings.  

Yuan et al. [18] present stiffness function for all 
angular-contact ball bearings by a back-propagation 
neural network method, which is trained by using 
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several (but not all) samples. Sayed [19] derived an 
equation for predicting the stiffness of deep-groove 
ball bearings. Experimental verification showed that 
the predicted results are satisfactory. In Guo’s work 
[20], a combined surface integral and finite element 
method is used to solve for the contact mechanics 
between the rolling elements and races. This model 
captures the time-dependent characteristics of the 
bearing contact due to the orbital motion of the 
rolling elements. Aydin [21] investigates the role of 
bearing preloads on the modal characteristics of a 
shaft-bearing assembly with a double row angular 
contact ball bearing. In Chen’s research [22] the 
stiffness of various geometric designs of aerostatic 
journal bearings for high-speed spindles was 
investigated under different operating conditions. 
Stone’s work [23] presented the methods and results 
of three research groups which have investigated the 
stiffness and damping of rolling element bearings 
whereby the most significant parameters are shown 
to be type of bearing, axial preload, 
clearance/interference, speed and lubricant. Harsha 
[24] presents an analytical model to investigate the 
nonlinear dynamic behavior due to cage run-out and 
number of balls in a rotating system supported by 
rolling element bearings.  

To study different physical and analytical 
parameters such as ball diameter, friction coefficient, 
penetration effects and boundary conditions in 
rigidity of ball bearing's FEM model was developed 
using ANSYS workbench. Moreover, we have 
experimentally checked the static stiffness model 
and compared our model results to some existing 
models found in the literature.  
 
1. Stiffness modeling 
 
The theoretical development of ball bearing model 
requires a contact mechanism, an equivalent model 
loading, and boundary conditions.    
 
Calculation procedure 
Deformations are calculated as a function of applied 
loads in order to deduce the stiffness. The ball 
bearing total deformation is composed of the local 
deformation due to contact of the ball to the outer 
and inner rings and balls and the ring’s global elastic 
deformation.  In this study, we concentrate only on 
the radial stiffness calculation of ball bearing. To 
obtain stiffness, the local deformation resulting from 
the contact between the ball and ring and global 
deformation of balls is considered. While 

 
 
other parameters affect the global deformation (e.g. 
elasticity of rings and housings), our experimental  
setup designed in such a way that only these two 
types of deformations were analyzed. 

1.1 Calculation according to the Hertz model 
If Rre denotes the radius of the ball, the radii of the 
curvature for the inner contact is (fig. 1) [1]: 
 

(1) 
 
 
 
 
 

Where: 
 R1x, R1y: Radii of the ball in two different  
planes 
R2x, R2y: Radii of the inner race in two 
different planes 
 α: Ball bearing contact angle  
 dm: Ball rotation diameter 

 
Two contacting solids formulations is expressed in 
terms of the curvature sum R, and curvature 
difference Rd : 
 

(2) 
 

 
(3) 

 
 
Where 
 

(4) 

 
(5) 

Figure 1. Contact bodies in an angle contact ball bearing 
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An ellipse is created in ball and race contact point in 
load application where a and b are semi-minor and 
semi-major axes of this ellipse geometry. The 
ellipticity parameter ke is defined as (Reusner,1977): 

 
(6) 

 
 
Also this parameter can be defined as a function of 
curvature difference Rd and the elliptic integrals of 
the first ξ and second ζ kind as:  

 

(7) 

 
Where 

(8) 

 
 

(9) 

 
 
 
Where φ is an auxiliary angle. As can be seen, 
integration is required to determine the ellipticity 
parameter and elliptic integrals. Numerical iteration 
and curve fitting techniques are followed to 
determine the ellipticity parameter:  
 

 
(10) 

 
 

(11) 
 
 
 

(12) 
 
 
The contact stiffness coefficient for the elliptical 
contact assumption can be calculated as: 
 

(13) 
 
 
Where the effective modulus of elasticity, E′ , is 
defined as: 
 
 

 
(14) 

 
 
E is the modulus of elasticity and ν is Poisson’s ratio. 
Subscripts denote solids 1 and 2. In the case of the 
ball bearing, both of the solids have the same 
elasticity properties. 
 

 
 

1.2 Calculation based on total deformation  
In the new method introduced here, the ball’s 
elastic deformation as well as local Hertzian 
deformation is considered for calculation. Hertzian 
deformation of one side is given by hr (fig. 2) for a 
contact between ball and ring as calculated 
geometrically:  
 

(15) 
 
According to equations 6-9, a can be calculated as 
below: 
 

(16) 
 
 
This is a new formula according to geometric 
interpretation, ellipticity parameter, and elliptic 
integrals of the first and second integrals. To 
compare this result with the, literature below 
comments should be kept in mind.  
     Hertz’s law gives the deformation in the 
following form: 
 

 

Figure 2. Local and total deformation of a ball 
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(17) 

 
 

 
With: 
 

 
(18) 
 

 
If δ is formulated as in equation 17 by using a as in 
Palmgren [2], Lim and Chin [5], De Mul et al. [6] we 
obtain the force-displacement relation: 
 

(19) 
 
Where K is the stiffness factor. Equations 15, 16 and 
19 have the similar bases, but in the new method 
deformation hr is obtained geometrically. Using the 
new method, the total deformation and force-
displacement relation can be calculated easily. Using 
Timoshenko (1968) beam theory and Hooke’s law, 
we modeled the ball compression. The elastic 
deformation of the ball is calculated as:  
 

(20) 
 
 
By resolving the equation in symmetrical domain of 
r(0..((R - h↓r)) as shown in figure 2 and adding local 
deformation between ball-inner race and ball-outer 
race contact, the total deformation formula including 
both elastic deformation of the ball and local 
Hertzian deformations is obtained as follows: 
 

(21) 

 
 
Where hᵣ́ is the local deformation between outer race 
and ball that is calculated the same as contact 
between ball and inner race but with different 
curvatures.  
     Equation 21 permits adopting a method to 
construct the curve of force-displacement f(δT). We 
have for each applied force Fi a corresponding local 
deformation hr and hᵣ́ using equation 15. Then these 
local deformations are introduced in equation 21 to 
obtain the corresponding total deformation δT. 
 
 
 
 

     
 
 The distributed loading on a ball bearing is 
illustrated in figures 4 and 5for a distributed 
loading slice on one ball between (φi φi +1), we have 
the following form (fig. 3): 
 
 

(22) 
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Figure 3. Force distribution on loaded balls 

Figure 4. The loading component of a ball 
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The total loading Fi applied to i2nd ball is:  
 
  

(23) 
 
 

 
After resolution of equation 23 for: 
 
 
 
 
 
and 
 
 
 
 

 
(24) 
 

 
The radial load is defined by: 
 
 

(25) 
 
 
 

The law linking loads to deformation [15] is 
expressed as follows: 
 
 

(26) 
 
 
Using equation 21 the force-displacement curve fT is 
obtained. Using equation 26, the ball stiffness for the 
nominal loading on each ball expressed by: 
 
 

(27) 
 
 
 
To obtain the total ball bearing radial stiffness, all 
loaded balls are considered. These are not uniformly 
loaded and their positioning in the cage is changing 
due to the ball bearing kinematics, and consequently 
stiffness is varying. The stiffness therefore becomes 
dependent on position.  

  
 
2. The Palmgren and Kramer models 
 
The most important research in the field of stiffness 
calculation of ball bearing was conducted by 
Palmgren [2] and Kramer [9]. The results of their 
works are hence compared with the model 
developed in this paper and experimental results 
are presented in the following section. 
 
2.1 The Palmgren formula 
Loads in rolling elements are given as follows [2]: 
 
 

(28) 
 
 
 
Balls:      �  
 
 
Rollers: �  
 
 
Where: 

δr = Radial displacement 
δa = Axial displacement 
Fr = Radial load 
Fa = Axial load 
Dw = Element diameter 
la = Roller lengths 
i = Element row number 
Q = Maximal load applied on elements 

 
The deformation for ball bearings is expressed by: 
 
 

(29) 
 
 
 

Figure 5. Applied force for a ball at position φi
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2.2 The Kramer formula 
Kramer’s [9] work resulted in ball bearings stiffness 
kr: 
 

(30) 
 
 
Where n and xr are given as follows: 
 
Bearings      n                                      xr   
 
Balls          3/2              1.2 x 10-7 x d-1/3 x Z-2/3 x F2/3   
 
Rollers      1/0.9            1.11 x 10-9 x l-0.8 x Z-0.9 x F0.9    
 
Where: 

xr = Displacement 
d = Ball diameter 
l = Roller length 
F = Load 

 
3. Finite element analysis 
 
Two different conditions were considered for 
analysis in ANSYS. Axial and radial stiffness are both 
analyzed. Spindle ball bearing 7014 was used as a 
model (fig. 7). On the basis that all the balls are 
distributed evenly at the circumferential direction, 
when the bearing is under axial displacement or 
force, this load will be the same to all the segments 
of the bearing. This presumption is called the 
symmetric condition. Hence one part of the whole 
bearing can be used to do the simulation. The result 
from the part model will hence be sufficient to 
evaluate the result. 
     For the case of radial load, one should consider 
the load distribution for the loaded balls. In other 
word all balls are not loaded and the loaded balls are 
not equally loaded (as depicted in fig. 3). This 
loading for the case of a radial load of 40 kN and 
resulting contact stress between balls and races are 
presented in figure 6. 
     A part of a ball bearing including half of a ball  
 

  

 

 
 
Figure 7. Spindle ball bearing 7014 in ANSYS workbench 
 

 
 

 
 
along with a slice of outer and inner ring is 
considered for the analysis. To do the simulation 
with the part model of bearing, flexible-flexible 
model has to be used for the rings and ball. The 
model is shown in figure 8. All the results of 
analysis were be evaluated and compared as 
reaction force vs. displacement of ball. 
     For the inner and outer ring and the outer part of 
the ball, SOLID 186 element as used. For the center 
of the ball SOLID187 was used. For the contact 
element, CONTA174, 3-D 8-Node Surface-Surface 
and for the target element, Targe170, 3-D 8-Node 
surface-surface were used. The materials for the 
inner, outer ring and balls are linear isotropic 
structure steel. Young’s modulus is 200 GPa and 
Poisson’s ratio is 0.3. 
     Axial loading of angular contact ball bearing 
causes contact between balls and races and in radial 
loading only some of balls are in contact with races 

Figure 8. A simplified model of ball bearing in ANSYS 

 
Figure 6. Loading distribution on balls of spindle ball bearing 
7014 and resulting contact stress distribution 
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(fig. 6). Contact analysis in ball bearings is highly 
nonlinear because of geometrical nonlinearity, 
material nonlinearity due to stress-strain relations 
and status change of structural contact. 
Frictional contact between the ball and the raceway 
were chosen to do the analysis in ANSYS in order to 
make the solution converge better. The friction 
coefficient used was μ=0.05. 
 

 
 
Figure 9. Boundary condition in case of axial load application in 
ball bearing 
 
3.1 Boundary condition 
The structure will respond differently for different 
boundary conditions. The boundary condition for the 
case of axial load analysis is depicted in figure 9. The 
frictionless support depicted in in figure 9 means the 
body can only move parallel to surface. The linear 
displacement of 0.1 mm in X direction (axial) and Y 
direction is applied onto the inner ring.   
     When the solution is done, it is possible to check 
all the parameters such as reaction force, strains and 
stresses, contact pressure, contact status, etc. An 
example of the reaction force-displacement plot of 
this model is depicted in figure 10.  

3.2 Factors influencing the reaction force 
It is of great import to consider which factors will 
influence the reaction force relation to displacement 
in order to ascertain which parameters most affect 
the final results of the proposed modeling. Physical 
parameters include the geometry, friction coefficient 
and the boundary conditions. 

 
 
Figure 10. Reaction forces in the X and Y directions from an 
ANSYS simulation 
 
Finite element analysis parameters are mesh 
density and penetration. These relations will be 
analyzed in the next steps. 
The pictures shown in figure 11 are different 
meshes of angular contact ball bearing model. Mesh 
a exhibits us one coarse mesh that the mesh of 
races are generated automatically. mesh_b is fine 
but not reasonable because the elements are 
distorted. 
     Mesh_c seems to be reasonable.  Further 
refinement of mesh_c is done in order to generate 
much finer mesh_d and mesh_e. The reaction force 
in the y direction for all the meshes are shown in 
figure 12. 
     As shown in figures 12 and 13, there exists 
larger difference in reaction force percent between 
coarse and fine mesh in the beginning region, up to 

Figure 11. Models with different mesh densities 
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Figure 12. Reaction force comparison for different mesh densities 
 

  
 
Figure 13. Difference reaction force in the Y direction for mesh_a 
and mesh_e 
 

 
 
Figure 14. Penetration vs. reaction force  
 
0.04 mm. In this region, contact stiffness has the 
most profound effect on the whole system stiffness. 
Afterwards, we find that the contact and the contact 
stiffness have no effect on the structural stiffness 
anymore, as the percent difference graph is flattened. 
 

 
Figure 15. The effect of ball diameter on reaction force  
 

 
 
Figure 16. The effect of friction force on reaction force 

Penetration and Reaction Force 
When the penalty based contact algorithms such as 
Pure Penalty and Augmented Lagrange are used to 
solve the contact problem penetration is a key 
parameter to evaluate the results of simulation in 
contact analysis. The ideal amount for contact 
penetration is zero. However, when the numerical 
approximation is used the penetration will be 
produced that should be minimized. Figure 14 plots 
the relation between the reaction force and different 
amount of maximum penetration. One can see that 
the penetration scarcely affects the reaction force.  

Physical factors influencing the reaction force 
Diameter of the balls and the curvature of the 
raceways of inner and outer ring, the friction 
coefficient and boundary condition are the physical 
parameters affecting the analysis results.   
     In the first case, the diameter of the ball is 
increased by 0.4 mm and in the second, the 
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Figure 17. Different boundary conditions for outer ring. a) The 
outer ring is totally fixed. b) The outer ring can move in the Y 
direction 
 
diameter is decreased by 0.4 mm. From figure 15 it is 
obvious that the diameter of the ball influences  
the reaction force dramatically. It is essential to 
make the FE model as accurate as possible: An 
increase of the ball diameter by 3.1% leads to the 
increase of reaction force by 29%. A decrease of 
ball's diameter by 3.1% results in the decrease of 
reaction force by 12.3%. Effect of friction force on the 
results of analysis is illustrated in figure 16.  

Boundary Conditions and Reaction Force 
Two cases are considered for boundary condition's 
effect on analysis results. The condition of the outer 
ring being totally fixed (fig. 17a), and the condition 
where the outer ring can move in the Y direction (fig. 
17b). 
     Before doing the simulation, we sought to gauge 
the behavior of the structure first and then simulate 
it. When the result is available, it is possible to 
compare the simulation results (fig. 18) with the real 
or experimental results and find the problem. The 
results of two assumed boundary condition will be 
compared with the experimental results later to see 
which boundary condition is the most realistic one.  
 

 
 
Figure 18. Boundary condition and reaction force 
 

 
 
Figure 19. Testing setup: Fixture, pressure axis and ball bearing 
 
4. Experimental validation of the model 
 
A universal testing machine of (GOTECH) was used 
for tests on spindle ball bearing type SKF 7014 with 
20 balls. This device is a general purpose tensile 
testing machine with capability of applying 100 kN 
on samples with a computer controlled servo 
system. The load was applied to the sample between 
stationary and moving jaws with computer-
controlled speed.  
 
Sample fixture 
 The structure was composed of pressure axis on 
the outer diameter of the bearing, and a steel rigid 
shaft to fit in the bore of the bearing.  
 
The control device 
The tensile machine is controllable with computer 
software. The test speed was adjusted and force 
recorded on control desk of computer. All 
parameters were gathered by the data acquisition 
system of the testing machine.  
 
Experimental conditions 
The loading speed was kept as low as possible. As 
the technical data sheet of the ball bearing specifies 
a maximum static load of below 44 kN, loading 
speed was set to 0.05 mm/min., the slowest in the 
range of the machine.  
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 Figure 20. Test results for the loading axis crossing one ball  
 
 

 
 
Figure 21. Test results for the loading axis crossing two balls 
 
 

  
 
Figure 22. Average of 6 tests for the case of loading axis passing 
through one ball 

 
Figure 23. Comparison of test results for loading axis passes one 
and two balls 
 

 
Figure 24. Ball bearing deformation deduced from tensile tests 
with and without the ball bearing 
 
 
The ball bearing was fitted between the pressure 
axes and bore shaft. Tests were done in two stages. 
One to achieve the stiffness of the sample fixture to  
be subtracted from test results of (sample fixture + 
ball bearing). This will result in stiffness of ball 
bearing only. 
     Figure 19 shows the assembly used to measure 
the stiffness of ball bearing. In the first test, the 
loading axis passes through one ball and in the 
second one the loading axis crosses two balls. Six 
experiments (fig. 20) for the first case (the average 
graph is depicted in figure 22) and two experiments 
(fig. 21) for the later one were realized. In figure 27 
a sample tensile test graph in computer is shown. 
Two resulting averages for the first set of 
experiments are shown in figure 23. As we see the 
resulted stiffness of the ball bearing is a function of 
balls positioning. This is obvious as shown in above 
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 Figure 25. Comparison of theoretical and experimental curves: 
Load-displacement (top) and stiffness-displacement (bottom) 
curves 
 
 

  
 
Figure 26. Theoretical method (total displacement method) 
comparison to Palmgren and Kramer methods 
 
 
 
 

 
 
Figure 27. Sample tensile test graph obtained in GOTECH tensile 
testing machine 
 
 
sections in theoretical formulations. As we know the 
resulting graphs for displacement as a function of 
loading for different test samples is not the actual  
function for the ball bearing only. The resulting 
displacement function includes both the 
displacement part of test fixtures along with the part 
for ball bearing. To achieve accurate results, we 
deduced the ball bearing displacement function 
from the total displacement function as follows: 
We first ran a tensile test without the ball bearing in 
the fixture, and subsequently with ball bearing 
mounted in the fixture. In doing so the flexibility of 
the test fixture was measured and we were able to 
deduce the displacement function for ball bearing 
only. The springs (fixture and ball bearing) are 
considered to be in series, and the function for ball 
bearing deduced [25]. The resulting graphs for 
tensile test of (fixture only) and (fixture + ball 
bearing) and deduced graph for the ball bearing 
itself are shown in figure 24. 
 
Results and discussion  
 
The theoretical results are shown in figure 26. We 
see that by adding another displacement term to the 
literature formula (i.e. Palmgren and Kramer), the 
displacement value for our theoretical method 
based on total deformation is higher than Kramer 
and Palmgren for specific loading level. Six tests for 
the situation of loading axis passing through one 
ball (fig. 20) and two tests in the case of loading axis 
passing between two balls were done (fig. 21). We 
clarify the position change effect of balls on stiffness 
behavior of the ball bearing in figure 23.  
Comparison between the experimental results and 
those drawn from the theoretical model (based on 
the total displacement method) is done in figure 25 
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Globally, the result from the total displacement 
theory reflects the experimental results relatively.  
 

• A similarity between experimental and 
theoretical curves in the ball bearing working 
range was attained. 

• At higher load values we see considerable 
difference in stiffness values. This may be 
cause of thermal heat treatment of balls and 
races that is not considered in theoretical 
models. Material nonlinearity is not considered 
in the model and warrants future study 

• Based on good conformity between experiment 
and total displacement theory, FEM results can 
be updated for unknown parameters, for 
example boundary conditions, to have reliable 
FEM approach for stiffness analysis of ball 
bearings. This will omit time consuming 
experimental study for different types of ball 
bearings.  

• The nonlinearity of the force-displacement 
curve is similar to the results of other studies 
[2], [9], [15] and [18].  

• A difference exists for response in different 
cases of ball positioning. We can therefore 
conclude that the ball bearing stiffness changes 
according to the balls positioning.  
 

Nonlinearities in the force-displacement curves are 
similar to the results of Flygt [12] and Kraus [13]. 
Results to those of Palmgren and Kramer are 
proximate while the total deformation curve, when 
we have added elastic deformation of ball to compute 
total deformations, is perceptibly different. Our 
model for nonlinear stiffness computation of a ball 
bearing showed good agreement with experimental 
values and is therefore acceptable in the range of 
allowable force for a ball bearing. 
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